
International Journal of Infrastructure Research and Management

Vol. 10 (1), June 2022, pp. 16 - 28

ISSN Print: 2811-3608

ISSN Online: 2811-3705 16

https://iukl.edu.my/rmc/publications/ijirm/

SQLIA TYPES AND TECHNIQUES - A SYSTEMATIC ANALYSIS OF

EFFECTIVE PERFORMANCE METRICS FOR SQL INJECTION

VULNERABILITY MITIGATION TECHNIQUES

Aduragbemi David Ogundijo, Atiff Abdalla Mahmoud Arabi and Tadiwa Elisha Nyamasvisva

Infrastructure University Kuala Lumpur, MALAYSIA

ABSTRACT
According to Open Web Application Security Project (OWASP), an online community that produces well-

researched reports in the field of web application security, Structured Query Language (SQL) injection remains

in the top three most common input vulnerability in applications due to the progression from static to dynamic

web pages leading to increased database use in web applications. SQL injection vulnerabilities is prevalent in

web and mobile applications because of common unsafe coding practices. A successful SQL injection attack

poses a significant risk to the database, application, and web server as a whole. In this article, the authors have

examined approaches for preventing SQL injection attacks and categorize SQL injection attacks based on the

methods used to exploit SQL vulnerabilities. In terms of preventing all forms of SQL injection attacks, the

discussed approach appears to be acceptable. This review paper presents a systematic review of the mitigation

steps which include reconnaissance, enumeration, and extraction of data. Also discussed are types of injection

attacks, some alternative procedures for mitigating SQL attacks and performance metrics for measuring the

effectiveness of SQL injection mitigation techniques.

Keywords:
Injection Attacks, Mitigation Techniques, Detection Mechanisms, Vulnerability Exploitation, Anomaly

Detection, Tautology, SQLIA

INTRODUCTION

The data management (model), display or front-end tiers (view) and application

processing(controller) also called Model-View-Controller (MVC), are conceptually separated in

today's web applications, and are based on an n-tier architecture. Instead of rewriting entire programs,

developers now just need to add or alter a single layer as needed, making design and maintenance

easier. (Al-Ahmad et al., 2014; Aniche et al., 2018; Paolone et al., 2021)

Figure 1. MVC Architecture as illustrated in (Aniche et al., 2018; Paolone et al., 2021)

The model or data management layer consists of a database server that stores and retrieves sensitive

information about the application and its users. The database data is frequently used for user

International Journal of Infrastructure Research and Management

Vol. 10 (1), June 2022, pp.16 - 28

ISSN Print: 2811-3608

ISSN Online: 2811-3705 17

https://iukl.edu.my/rmc/publications/ijirm/

authentication, storing records and their relationships, and presenting the data on a dynamically

generated web page. Application Programming Interfaces (APIs) such as Open Database Connectivity

(ODBC) and Java Database Connectivity are used to link the web application to the database

management system (JDBC). Connection to the database servers are established and SQL queries are

run using the built-in objects and methods. The SQL query processor receives the queries and executes

them. The application server receives the results of the queries. The application server examines the

returned data and makes a judgment, after which the data is rendered in the dynamic web page by the

browser. User-supplied parameters are frequently included in the query that is sent to the database

server for execution. The user-supplied input parameters may or may not be reliable. The query

processor will, of course, run the query and deliver the result to the browser for display to user

regardless of the query's type. The query, however, might still include malicious code or be logically

wrong.

Attackers can inject malicious code into the input parameter as a result of the MVC design. If

the code fails to appropriately isolate programme instructions from user data, the adversary may be

able to do malicious input. By modifying the SQL query, the attacker can extract confidential

information from the database and obtain complete control of the database and database server. The

term "SQL injection attack" is used by hackers to describe this type of web application attack. The

attack's main benefit is that it uses port 80 (HTTP's default port), which is always open and not blocked

or filtered by the firewall. In this article, the SQL injection attack and ways for exploiting it were

examined, and the methods were classified based on the approach used to exploit them. The work on

preventing SQL injection attacks has been reviewed, and a novel strategy to preventing such attacks

has been proposed and presented.

SQL INJECTION

SQL injection attacks are a form of injection attack in which the attacker inserts SQL commands into

the input parameters to affect how the server executes SQL queries (Dalai & Jena, 2017). Attackers

exploit situations where developers combine SQL statements with user-submitted parameters,

injecting SQL instructions within those parameters to change the pre-defined SQL query. As a result,

the attacker can use the application processing layer to execute arbitrary SQL instructions and queries

on the database server using the application processing layer (Prokhorenko et al., 2016c). A successful

SQL injection attack can access sensitive database data, change data (insert/alter/update/delete), run

administrative operations, and get the content of a specified file on the database server, as well as run

operating system level commands (Damele & Guimares, 2009). Below is an example of a SQL

injection attack. Assume a web page is dynamically produced by using the user's parameter in the

URL itself, such as:

http://www.testdomain.com/Admit/Candidates.asp?Sid=199

The SQL query that corresponds to the application code is run, such as

SELECT Name, Branch, Department FROM Candidate WHERE MatricNumber = 199

An attacker might take advantage of the fact that the application accepts the parameter "Sid" and

sends it to the database server without any validation or escaping. As a result, the arguments can be

tampered with to generate malicious SQL queries. For example, if the variable "Sid" is set to "199 or

2=2," the following URL is generated:

http://www.testdomain.com/Admit/Candidates.asp?Sid=199 or 2=2

The SQL statement will now be transformed into

SELECT Name, Department, Location FROM Candidate WHERE MatricNumber = 199 or

2=2

International Journal of Infrastructure Research and Management

Vol. 10 (1), June 2022, pp.16 - 28

ISSN Print: 2811-3608

ISSN Online: 2811-3705 18

https://iukl.edu.my/rmc/publications/ijirm/

This condition is always true, and the user will receive all of the Name, Department, and Location

triplets. By adding arbitrary SQL instructions, the attacker can further exploit this vulnerability. An

attacker may, for example, make a request for the following URL:

http://www.testdomain.com/Admit/ Candidates.asp?Sid=199; DROP TABLE Candidate

The semicolon in the above URL stops the server-side SQL query and adds a new one to be executed.

The second query is “DROP TABLE Candidate” which deletes the table from the database server. An

attacker can utilize the “UNION SELECT” query to retrieve data from additional tables in a similar

fashion. The UNION SELECT command allows the results of two distinct SELECT queries to be

combined.

Many online applications' default security approach treats SQL queries as trusted commands.

As a result, attackers can use this flaw to bypass access restrictions, authorisation, and authentication

checks. SQL queries can sometimes be used to obtain server operating system commands through

stored procedures. In most cases, the database management server includes stored procedures such as

the extended stored procedure. "xp_cmdshell" is a Microsoft extended stored procedure that is kept in

the master database. This process enables you to use T-SQL code to issue operating system commands

straight to the Windows command shell. The output of these commands will be returned to the calling

function if it is required. As a result, the attacker in the preceding example can set the value of "Sid"

to "199; EXEC master..xp cmdshell dir – –"; if run, this will return a list of files in the SQL Server

process' current directory. The attacker can load and read arbitrary files from the server using LOAD

FILE('xyz.txt') in MySQL.

STEPS FOR EXPLOITING VULNERABILITIES

Reconnaissance, enumeration, data extraction, and command execution are some of the steps that may

be taken to attack the SQL injection vulnerability. The stages are outlined in full below. In this write

up Microsoft SQL Server is being used as the main database backend throughout.

Reconnaissance

It is the first and most crucial step in optimizing an application's potential. It's a technique for

fingerprinting the technologies used, which helps the attacker conduct a SQL injection attack more

successfully. When database server error messages are sent to the client, they may reveal a lot of

information about the database server technology that the web application is utilizing. However, if

the web application displays a verbose error message supplied by the database, the query "SELECT

@@version" can be used to acquire precise information about the back-end database server, such as

the specific version and patch level. Security and Communication Networks 3 would show up on the

screen

Microsoft OLE DB Provider for SQL Server error ‘80040e0x’Microsoft][ODBC SQL

ServerDriver][SQL Server] Conversion failed when converting the varchar

value ‘Microsoft SQL Server 2008 -9. 0x.13xx.0x (Intel X86) Nov 15 2008

00:33:37 Copyright (c) 198X-2008 Microsoft-Corporation Express Edition on Windows NT

5.5 (Build 379X: Service Pack 2X)’ to data type int. /Candidatesx. aspx, line 213

This demonstrates that the victim's back-end is Microsoft SQL Server 2008. It also contains

information about the host operating system and the precise build level. As a result, similar approaches

may be used to produce more accurate fingerprints for additional bits of information, such as shown

in the following table 1.

International Journal of Infrastructure Research and Management

Vol. 10 (1), June 2022, pp.16 - 28

ISSN Print: 2811-3608

ISSN Online: 2811-3705 19

https://iukl.edu.my/rmc/publications/ijirm/

Table 1: Reconnaissance: Queries which can be used to exploit detailed information about backend

servers

 Query Description

1 @@version Ver. For DBMS

2 db name() Database name

3 @@servername Server name for MS-SQL installation

4 @@language language name

5 @@spid ID of current user’s Process

Enumeration

To carry out a successful attack and completely exploit the SQL injection vulnerability, you must first

list all of the database's tables and column names. Metadata is information on all of the system and

user-defined tables that is stored in a database management system's pre-defined tables. As a result,

in order to enumerate the database server's tables/columns, the attacker must first get access to those

tables. Table 2 presents the queries to retrieve the database name, table name, and column name.

Table 2: Enumeration queries which can be used to exploit detailed information about Databases,

Tables and Columns

 Extract Query

1 Databases select name from master..sysdatabases

2 Tables SELECT name FROM Databasename..sysobjects WHERE

xtype=‘U’

3 Columns SELECT name FROM Databasename..syscolumns WHERE

id = (SELECT id FROM Databasename..sysobjects WHERE

name = ‘Tablename’)

Extraction of data

After determining the column, table, and database names, the following step is data extraction from

the tables. The “UNION SELECT” query is used to extract the data. The number of columns in the

injected query must match the number of columns in the preexisting SELECT query in the UNION

SELECT statement. We may use an ORDER BY statement to get the precise number of columns in an

existing query. The query must be run again and again until it runs without errors and the number of

columns is revealed by the last successfully completed query. The number of columns may also be

determined by progressively increasing the number of columns in the “UNION SELECT” expression

until the query executes successfully, as shown below.

http://www.testdomain.com/Admit/Candidates.asp?Sid=199+union+select+1--

http://www.testdomain.com/Admit/Candidates.asp?Sid=199+union+select+1,2--

http://www.testdomain.com/Admit/Candidates.asp?Sid=199+union+select+1,2,3--

The UNION operator combines two SELECT queries into one and displays the result. Consequently,

you may use the UNION SELECT query to acquire the data you need from the database server. The

command will then be executed in the next stage. This phase comprises exploiting the injection flaw

to execute system commands. To perform system commands, the current user must have elevated

privileges. To run system commands in MS-SQL, use xp cmdshell, such as exec master.xp cmdshell

'ipconfig'.

International Journal of Infrastructure Research and Management

Vol. 10 (1), June 2022, pp.16 - 28

ISSN Print: 2811-3608

ISSN Online: 2811-3705 20

https://iukl.edu.my/rmc/publications/ijirm/

TYPES OF SQL INJECTION ATTACKS

As numerous research (Al-Khashab et al., 2011; Buehrer et al., 2005; Liu et al., 2009; Yeole &

Meshram, 2011) have shown, there are various forms of SQL injection attacks. These attack types

were normally called after the techniques used to exploit the injection vulnerability. Tautology,

addition of comments, type mismatch, query piggy bank, union query, stored procedure function and

inference techniques are discussed in Table 3 below.

Table 3: Types of SQL Injection Attacks, Sample Codes and Explanations

Attack

Type

Sample Code Brief Explanation

1.Tauto

logy

“Select from admin where

user id = ‘ ' and password

= ‘ ' or ‘a' Equals ‘a' “

A tautology is a logical assertion that is TRUE regardless of

the interpretation (cite,xxxx). The same principle is utilized

in SQL queries in the conditional statement, in the WHERE

clause, to make it always TRUE and return all data. To

conduct the injection attack, this is frequently placed in the

susceptible parameter. Tautology is mostly used to get

around the login authentication process. Blind SQL injection

vulnerability is also confirmed using tautology.

2.Addit

ion of

comme

nts

“SELECT ∗ from admin

where userid= ‘xxx’;

-- and password =‘yyy’;”

SQL, like other programming languages, allows you to

include a comment line in your code. The code can be

commented by adding a double hyphen in MS-SQL or a # in

MySQL. The code is not executed because of the comment

line. The attackers take advantage of this by inserting a

comment in the susceptible parameter, which disables the

rest of the code that follows the vulnerable parameter. The

following is a simple example of how to use a comment line.

The above code can bypass the login authentication by

giving only valid user id.

3.Type

Mismat

ch

“http://www.testdomain.c

om/Admit/Candidates.asp

?Sid=system user

The error output is like

[Microsoft][ODBC SQL

Server Driver][SQL

Server] error: xxx,

Conversion failed when

converting the varchar

value ‘sa’ to data type

integer”

The “Type mismatch in expression” error indicates that

Access cannot match an input value to the data type it

expects for the value. For example, if you give Access a text

string when it is expecting a number, you receive a data type

mismatch error. In case of type mismatch in the query, SQL

provides a verbose error message, for instance, from the

above error message, we can clearly know that the current

user is ‘sa’; hence, the attacker takes advantage of this and

provides type mismatch queries like giving characters to a

numeric type and vice versa and can easily extract a lot of

information.

4.Query

Piggyb

ack

 A query that is stacked or piggybacked query is one that

executes a series of SQL queries in a single connection to

the database server. When opposed to merely injecting code

into the original query, the ability to terminate the old query

and attach a whole new one while leveraging the fact that

the database server would execute both of them gives the

attacker greater freedom and options. The stacked query is

supported by the majority of database management systems.

For ALTER, DELETE, and other operations, stacked queries

International Journal of Infrastructure Research and Management

Vol. 10 (1), June 2022, pp.16 - 28

ISSN Print: 2811-3608

ISSN Online: 2811-3705 21

https://iukl.edu.my/rmc/publications/ijirm/

can be constructed and performed. This can have a

significant influence on the back-end database.

5.Union

Query

“http://www.testdomain.c

om/Admit/UNION

SELECT

Candidates.asp?Sid=199

FROM LOGIN, USERID,

AND PASSWORD;”

This is a query that joins two or more tables together. The

union operator takes the results of two SELECT queries and

merges them into a single result. As a consequence, after

enumerating the table and column names, the vulnerable

parameter may be used to inject the UNION SELECT

statement, which will combine the results with the original

query and obtain the data. The following is an example of

how to use UNION SELECT.

 The userid and password pair will be combined

with the original query and shown to the client in the above

request. The query may be tweaked further to loop through

all of the rows in the login database.

6.Store

d

Proced

ure

Functio

ns

“SELECT password hash

FROM

logins.sys.sqlhttp://www.te

stdomain.com/Admit/Cand

idates.asp?Sid=199+unio

n+select+master.varbinto

hexstr(password hash)+

dbo.fn

where

+name=‘sa'+from+sys.sq

l+logins”

A stored procedure in a database management system is a

collection of SQL statements that are concatenated to form

a process that is saved in the data dictionary. Stored

procedures are available in compiled form, allowing many

programs to share them. The usage of stored procedures can

help with productivity, data integrity, and data access

control. These stored procedures can be used by the attacker

to have a significant influence on the SQL injection attack.

The stored procedure exec master is an example of how to

use it.

‘ipconfig' in xp cmdshell xp cmdshell is an MSSQL

extended stored procedure that allows administrators to

perform operating system level commands and obtain the

necessary results. SQL injection can also be aided by the

usage of system defined functions. The sql logins view in

SQL Server 2005 stores hashes. The query may be used to

get the system hash.

 The method fn varbintohexstr() transforms the

password hash saved in varbinary form to hex so that it can

be viewed in a browser, and then it is decrypted into plain

text using tools like "Cain and Abel."

7.Infere

nce

“http://www.testdomain.c

om/

Admit/Candidates.asp?Sid

=199 and

SUBSTRING(user

name(),1,1)=‘c'

SUBSTRING(user

name(),1,1)=‘c'

SUBSTRING(user name —

"

The act or process of drawing logical conclusions is known

as inference (cite, xxxx). We use inference to extract

information from time to time; for example, “if we receive

this output, then this may be occurring at the back-end.” By

observing the answer to a given query, inference methods

can extract at least one item of data. The key is observation,

since when the query is true, the answer will have a different

signature than when it is false.

 The states of False and True are determined by the

response on the page after each request is received; that is,

if the response includes the phrase "no records exist," the

state was False; otherwise, the state was True. Similarly,

starting with the letter "a" and going through the alphabet,

we can deduce all subsequent characters of the USER name

by repeating the technique.

International Journal of Infrastructure Research and Management

Vol. 10 (1), June 2022, pp.16 - 28

ISSN Print: 2811-3608

ISSN Online: 2811-3705 22

https://iukl.edu.my/rmc/publications/ijirm/

ALTERNATIVE METHODS

Input filters are frequently used in web applications to defend against common threats such as SQL

injection. Attackers may employ encoding techniques to get around such filters. Case variation, URL

encoding, CHAR function, dynamic query execution, null bytes, layering striped expressions,

exploiting truncation, and other techniques are used to achieve the approach. The attacker gets through

the defense measures by employing the methods listed above. The following are some examples of

how to use alternative approaches.

Several strategies for avoiding SQL injection attacks have been developed. One of the most

recent security trends is the focus on the security of smart devices that use the Android operating

system. Some recent papers (Azfar et al., 2014, 2015, 2016a, 2016c, 2016b, 2017) demonstrate

approaches for maintaining security in an Android context. Security in web applications, on the other

hand, cannot be overlooked due to its widespread use. These strategies are presented and described

in Table 4: Strategies for Avoiding SQL Injection Attacks (Refer to the table 4)

Table 4: Strategies for Avoiding SQL Injection Attacks

 Strategy Description References

1 Static

Evaluation.

Some techniques depend solely on static examination of

source code. These approaches examine the program and

utilize heuristics or information flow analysis to find code

that is vulnerable to SQL injection attacks. Before being

included into the query, each and every user input is

scrutinized. These approaches can yield false positives

due to the inaccuracy of the static analysis that is being

performed. Furthermore, because the approach depends

on declassification criteria to turn untrustworthy data into

more reliable data, it may result in false negatives. To

identify whether an application may create questions that

include tautologies, Wassermann and Su offer an

approach that combines static analysis and automated

reasoning techniques. The sorts of SQL injection attacks

that this method may identify are restricted.

(Gould et al.,

2004; Lam et

al., n.d.;

Livshits & Lam,

2005;

Wassermann &

Su, 2004; Xie &

Aiken, 2006)

2 Runtime

Monitoring

and Static

Analysis

AMNESIA (Analysis and Monitoring for Neutralizing

SQL Injection Attack) is an approach that combines static

analysis with runtime monitoring. They create legitimate

queries in the static part, which the application can

generate automatically. In the dynamic section, the

dynamically built runtime questions are monitored and

confirmed for compatibility with the static part's queries.

(Halfond &

Orso, 2005b,

2005a, 2006)

International Journal of Infrastructure Research and Management

Vol. 10 (1), June 2022, pp.16 - 28

ISSN Print: 2811-3608

ISSN Online: 2811-3705 23

https://iukl.edu.my/rmc/publications/ijirm/

3 Context-

Oriented

Approach

Prokhorenko's context-oriented approach provides a

unique way for protecting web applications against many

sorts of attacks. This paper provides a single general

solution for many forms of web application injection

attacks. The authors have chosen a different approach to

the vulnerability's underlying cause. The typical attack

features are examined in this paper, and a context-oriented

model for web application protection is built as a result.

The presence of a backdoor in the code, on the other hand,

may be undetected by the model. The method may not be

able to work as intended if code obfuscation, code hiding,

and other techniques are used. A general and extendable

PHP-oriented protection framework is provided by

Prokhorenko et al. The suggested framework is mostly

dependent on the application developer's knowledge of his

or her intentions. It monitors the execution in real time and

detects deviations from the planned behavior, assisting in

the prevention of potentially harmful activities. This

approach is just for detecting attacks in the PHP

environment of 6 Security and Communication Networks.

If the application is built with a technology other than

PHP, this technique will fail to defend against assaults.

(Prokhorenko et

al., 2016a,

2016b)

4 Validation of

input.

The incorrect separation of code and input data is the

source of many injection problems. As a result, different

approaches based on input validation have been presented.

Controlling the flow of user input through the secure

gateway is done using Security Policy Descriptor

Language (SPDL) By imposing user input limitations, the

defined policy analyzes and modifies each

request/response. PowerForms all utilize a similar

approach. These signature-based methods may have

insufficient input validation processes, resulting in false

positives. Because these methods are reliant on humans,

determining the data that needs to be filtered and the

policy that should be implemented takes a lot of time.

(Brabrand et al.,

2000; Kareem et

al., 2021;

Khalaf et al.,

2021; D. J.

Scott, 2005; D.

Scott & Sharp,

2002)

5 Randomization

of Instruction

Sets.

Each term and operator in all SQL statements in the

programme code is assigned a random token using a

technique called SQLrand. The query is double-checked

before being submitted to the database to ensure that all

operators and keywords include the token. The assaults

would be readily identified because the attacker's

operators and keywords do not contain that token. This

method is cumbersome because it requires randomising

both the underlying SQL parser in the database and the

SQL statements in the computer code. When the random

tag is applied to the entire SQL statement and each phrase,

the query becomes arbitrarily long. It's also vulnerable to

brute-force attacks if you use this method.

(Boyd &

Keromytis,

2004)

International Journal of Infrastructure Research and Management

Vol. 10 (1), June 2022, pp.16 - 28

ISSN Print: 2811-3608

ISSN Online: 2811-3705 24

https://iukl.edu.my/rmc/publications/ijirm/

6 Anomaly

Detection or

Learning-

Based

Methods

To learn all of the required query structure statically or

dynamically a variety of learning-based methods has been

suggested. The integrity or precision of the learning

algorithms determines how successful detection is.

(Asmawi et al.,

2008; Halfond

& Orso, 2005a;

Jia Yew et al.,

2014; Lee et al.,

2002; Valeur et

al., 2005)

PERFORMANCE METRICS

The Table 5 describes performance metrics which can be utilized to evaluate the effectiveness of the

suggested model were the False Acceptance Rate (FAR), Genuine Acceptance Rate (GAR), False

Rejection Rate (FRR), Receiver Operating Characteristics (ROC) curve, and Area Under ROC curve

(AUC). For the full description refer to Table 5: Performance Evaluation Metrics for Model

Effectiveness.

Table 5: Performance Evaluation Metrics for Model Effectiveness

 Performance

Metric

Description Reference

1 Rate of False

Acceptance

(FAR).

The frequency of attack vectors that can get past the attack

detection mechanism is measured in FAR. This statistic is

intended to assess how well the suggested strategy

performs in the attack detection mode. When the

application server's security system fails to intercept a

malicious web request, the query with SQL injection code

is transmitted to the database server for execution,

resulting in a false acceptance.

(Arora &

Kumar, 2021;

Chakladar et al.,

2021; Chandra et

al., 2021; J.

Chen et al.,

2021; Hammad

& Wang, 2019;

Tomar & Singh,

2021; Wan et al.,

2021)

2 Genuine

Acceptance

Rate (GAR).

The frequency of acceptance in relation to the legitimate

web requests provided for execution is referred to as GAR.

These data are intended to assess the proposed approach's

performance when utilized in attack verification mode.

When a legitimate web request is categorized as a regular

(nonattack) pattern, it is said to be genuine.

(Hammad &

Wang, 2019)

3 Rate of False

Rejection

(FRR).

The frequency of rejections in relation to the number of

valid web requests that should be forwarded for execution

is referred to as the FRR. These data are used to evaluate

how well the proposed method performs in the verification

mode. When a legitimate web request is misclassified as

malicious, a false rejection occurs.

(Arora &

Kumar, 2021;

Chakladar et al.,

2021; D. Chen et

al., 2021; J.

Chen et al.,

2021; Hammad

& Wang, 2019;

Wan et al., 2021)

International Journal of Infrastructure Research and Management

Vol. 10 (1), June 2022, pp.16 - 28

ISSN Print: 2811-3608

ISSN Online: 2811-3705 25

https://iukl.edu.my/rmc/publications/ijirm/

4 Operational

Characteristics

of the

Receiver

(ROC).

The ROC curve shows the relationship between GAR

(Genuine Acceptance Rate) and FAR as the threshold

value changes. Linear, logarithmic, and semilogarithmic

scales are used to plot the curve.

(Chandra et al.,

2021; Hammad

& Wang, 2019;

Tomar & Singh,

2021; Wan et al.,

2021)

5 The Surface of

the ROC

Curve (AUC).

The Area Under the Curve (AUC) is the percentage of

coverage under the ROC curve. The more coverage the

system has, the more accurate it is. In an ideal world, GAR

= 1 at FRR = 0 for a system with 100 percent accuracy,

resulting in AUC = 100 percent.

(Natole, 2020;

Yang et al.,

2021; Yuan et

al., n.d.)

6 Error Rates

Are Equal

(EER).

The EER is the point on a ROC curve when the FAR and

FRR are equal. As a result, a lower EER implies higher

performance. Table 1 and Figure 8 show that the suggested

technique produces good results. The suggested solution is

then compared to current strategies in terms of their ability

to fight against different forms of SQL injection attacks.

The results demonstrate that the proposed model

outperforms its competitors. The results of comparisons

with known techniques are summarized in Table 2. It is

obvious that the suggested technique is resistant to all

forms of SQL injection attacks.

(Chandra et al.,

2021; Hammad

& Wang, 2019;

Tomar & Singh,

2021)

CONCLUSION

SQL injection attacks remain at the top long-term running threat to the web and it resources. Presented

is a review of are the steps which include reconnaissance, enumeration, and extraction of data. Also

discussed are types of injection attacks including tautologies, addition of comments, type mismatch,

query piggy backing, union query, inference, and stored procedures. some alternative procedures for

mitigating SQL attacks were also discussed which included static evaluation and static analysis,

runtime monitoring, content-oriented approach, validation of input, randomization of instruction sets,

anomaly detection and learning based methods. Performance metrics for measuring the effectiveness

of SQL injection mitigation techniques were presented last which included, rate of false acceptance

(FAR), genuine acceptance rate (GAR), rate of false rejection (FRR), Operational characteristics of

the receiver (ROC)surface of ROC curve (AUC) and equal error rates. To check for fraudulent input,

the paper suggests successively extracting the intended user input from the dynamic query string.

AUTHOR BIOGRAPHY

Aduragbemi David Ogundijo is student of the postgraduate programme PhD (Information

Technology) at Infrastructure University Kuala Lumpur (IUKL) Faculty of Engineering, Science and

Technology. He holds a BSc in IT (Software Engineering), MSc in Information Systems. His research

interests are mainly in mitigating SQL Injection Attacks Email: aduragbemi.ogundijo@gmail.com.

Atiff Abdalla Mahmoud Arabi is student of the postgraduate programme PhD (Information

Technology) at Infrastructure University Kuala Lumpur (IUKL) Faculty of Engineering, Science and

Technology. He obtained his BIT and Masters in IT in Networking from IUKL. His research interests

International Journal of Infrastructure Research and Management

Vol. 10 (1), June 2022, pp.16 - 28

ISSN Print: 2811-3608

ISSN Online: 2811-3705 26

https://iukl.edu.my/rmc/publications/ijirm/

include Zero Trust, Biometrics Authentication, and Prevention of Network-Based Academic

Dishonesty. Email: atiff2009@gmail.com

Tadiwa Elisha Nyamasvisva, PhD is a member at the Faculty of Engineering and Science

Technology in IUKL. His research interests are in Computer Algorithm Development, Data Analysis,

Networking and Network Security, and IT in Education. Email: tadiwa.elisha@iukl.edu.my

REFERENCES

Al-Ahmad, H., Atan, R., Azim, A., Ghani, A., & Murad, M. A. (2014). SOFTWARE

MAINTAINABILITY ASSESSMENT BASED ON COLLABORATIVE CMMI MODEL.

Infrastructure University Kuala Lumpur Research Journal, 2(1).

Al-Khashab, E., Al-Anzi, F. S., & Salman, A. A. (2011). PSIAQOP: Preventing SQL Injection

Attacks based on query optimization process. Proceedings of the 2nd Kuwait Conference on

E-Services and e-Systems, KCESS’11. https://doi.org/10.1145/2107556.2107566

Aniche, M., Bavota, G., Treude, C., Gerosa, M. A., & van Deursen, A. (2018). Code smells for Model-

View-Controller architectures. Empirical Software Engineering, 23(4), 2121–2157.

https://doi.org/10.1007/s10664-017-9540-2

Arora, M., & Kumar, M. (2021). AutoFER: PCA and PSO based automatic facial emotion

recognition. Multimedia Tools and Applications, 80(2), 3039–3049.

https://doi.org/10.1007/s11042-020-09726-4

Asmawi, A., Sidek, Z. M., & Razak, S. A. (2008). System architecture for SQL injection and insider

misuse detection system for DBMS. Proceedings - International Symposium on Information

Technology 2008, ITSim, 3, 4–9. https://doi.org/10.1109/ITSIM.2008.4631942

Azfar, A., Choo, K. K. R., & Liu, L. (2014). A study of ten popular Android mobile VoIP applications:

Are the communications encrypted? Proceedings of the Annual Hawaii International

Conference on System Sciences, 4858–4867. https://doi.org/10.1109/HICSS.2014.596

Azfar, A., Choo, K. K. R., & Liu, L. (2015). Forensic taxonomy of popular Android mHealth apps.

2015 Americas Conference on Information Systems, AMCIS 2015, August, 13–15.

Azfar, A., Choo, K. K. R., & Liu, L. (2016a). An Android Communication App Forensic Taxonomy.

Journal of Forensic Sciences, 61(5), 1337–1350. https://doi.org/10.1111/1556-4029.13164

Azfar, A., Choo, K. K. R., & Liu, L. (2016b). An android social app forensics adversary model.

Proceedings of the Annual Hawaii International Conference on System Sciences, 2016-March,

5597–5606. https://doi.org/10.1109/HICSS.2016.693

Azfar, A., Choo, K. K. R., & Liu, L. (2016c). Android mobile VoIP apps: a survey and examination

of their security and privacy. Electronic Commerce Research, 16(1), 73–111.

https://doi.org/10.1007/s10660-015-9208-1

Azfar, A., Choo, K. K. R., & Liu, L. (2017). Forensic taxonomy of android productivity apps.

Multimedia Tools and Applications, 76(3), 3313–3341. https://doi.org/10.1007/s11042-016-

3718-2

Brabrand, C., Møller, A., Christensen, R. M., & Schwartzbach, M. I. (2000). PowerForms:

Declarative Client-Side Form Field Validation. BRICS Report Series, 7(43), 1–20.

https://doi.org/10.7146/brics.v7i43.20210

Buehrer, G., Weide, B. W., & Sivilotti, P. A. G. (2005). Using parse tree validation to prevent SQL

injection attacks. SEM 2005 - Proceedings of the 5th International Workshop on Software

Engineering and Middleware, September, 106–113. https://doi.org/10.1145/1108473.1108496

Chakladar, D. das, Kumar, P., Roy, P. P., Dogra, D. P., Scheme, E., & Chang, V. (2021). A

multimodal-Siamese Neural Network (mSNN) for person verification using signatures and

EEG. Information Fusion, 71, 17–27. https://doi.org/10.1016/j.inffus.2021.01.004

International Journal of Infrastructure Research and Management

Vol. 10 (1), June 2022, pp.16 - 28

ISSN Print: 2811-3608

ISSN Online: 2811-3705 27

https://iukl.edu.my/rmc/publications/ijirm/

Chandra, S., Singh, K. K., Kumar, S., Ganesh, K. V. K. S., Sravya, L., & Kumar, B. P. (2021). A

novel approach to validate online signature using machine learning based on dynamic features.

Neural Computing and Applications, 33(19), 12347–12366. https://doi.org/10.1007/s00521-

021-05838-6

Chen, D., Yan, Q., Wu, C., & Zhao, J. (2021). SQL Injection Attack Detection and Prevention

Techniques Using Deep Learning. Journal of Physics: Conference Series, 1757(1).

https://doi.org/10.1088/1742-6596/1757/1/012055

Chen, J., Cai, L., Tu, Y., Dong, R., An, D., & Zhang, B. (2021). An Identity Authentication Method

Based on Multi-modal Feature Fusion. Journal of Physics: Conference Series, 1883(1).

https://doi.org/10.1088/1742-6596/1883/1/012060

Dalai, A. K., & Jena, S. K. (2017). Neutralizing SQL injection attack using server side code

modification in web applications. Security and Communication Networks, 2017.

https://doi.org/10.1155/2017/3825373

Gould, C., Su, Z., & Devanbu, P. (2004). JDBC checker: A static analysis tool for SQL/JDBC

applications. Proceedings - International Conference on Software Engineering, 26(June 2004),

697–698. https://doi.org/10.1109/icse.2004.1317494

Halfond, W. G. J., & Orso, A. (2005a). AMNESIA: Analysis and monitoring for NEutralizing SQL-

injection attacks. 20th IEEE/ACM International Conference on Automated Software

Engineering, ASE 2005, 174–183. https://doi.org/10.1145/1101908.1101935

Halfond, W. G. J., & Orso, A. (2005b). Combining static analysis and runtime monitoring to counter

SQL-injection attacks. 1–7. https://doi.org/10.1145/1083246.1083250

Halfond, W. G. J., & Orso, A. (2006). Preventing SQL injection attacks using AMNESIA.

Proceedings - International Conference on Software Engineering, 2006, 795–798.

https://doi.org/10.1145/1134285.1134416

Hammad, M., & Wang, K. (2019). Parallel score fusion of ECG and fingerprint for human

authentication based on convolution neural network. Computers and Security, 81, 107–122.

https://doi.org/10.1016/j.cose.2018.11.003

Jia Yew, T., bin Samsudin, K., Izura Udzir, N., & Jahari bin Hashim, S. (2014). BUFFER

OVERFLOW ATTACK MITIGATION VIA TRUSTED PLATFORM MODULE (TPM).

Infrastructure University Kuala Lumpur Research Journal, 2(1).

Kareem, F. Q., Ameen, S. Y., Salih, A. A., Ahmed, D. M., Kak, S. F., Yasin, H. M., Ibrahim, I. M.,

Ahmed, A. M., Rashid, Z. N., & Omar, N. (2021). SQL Injection Attacks Prevention System

Technology: Review. Asian Journal of Research in Computer Science, 13–32.

https://doi.org/10.9734/ajrcos/2021/v10i330242

Khalaf, O. I., Sokiyna, M., Alotaibi, Y., Alsufyani, A., & Alghamdi, S. (2021). Web attack detection

using the input validationmethod: Dpda theory. Computers, Materials and Continua, 68(3),

3167–3184. https://doi.org/10.32604/cmc.2021.016099

Lam, M. S., Whaley, J., Livshits, V. B., Martin, M. C., & Carbin, M. (n.d.). Context-Sensitive

Program Analysis as Database Queries.

Lee, S. Y., Low, W. L., & Wong, P. Y. (2002). Learning Fingerprints for a. Architecture, 264–279.

Liu, A., Yuan, Y., Wijesekera, D., & Stavrou, A. (2009). SQLProb: A proxy-based architecture

towards preventing SQL injection attacks. Proceedings of the ACM Symposium on Applied

Computing, 2054–2061. https://doi.org/10.1145/1529282.1529737

Livshits, V. B., & Lam, M. S. (2005). Finding Security Errors in Java Programs with Static Analysis.

Proc. Usenix Security Symposium, 271–286.

Natole, M. J. (2020). Fast Optimization Algorithms For AUC.

Paolone, G., Paesani, R., Marinelli, M., & Felice, P. di. (2021). Empirical Assessment of the Quality

of MVC Web Applications Returned by xGenerator. https://doi.org/10.3390/computers

International Journal of Infrastructure Research and Management

Vol. 10 (1), June 2022, pp.16 - 28

ISSN Print: 2811-3608

ISSN Online: 2811-3705 28

https://iukl.edu.my/rmc/publications/ijirm/

Prokhorenko, V., Choo, K. K. R., & Ashman, H. (2016a). Context-oriented web application protection

model. Applied Mathematics and Computation, 285, 59–78.

https://doi.org/10.1016/j.amc.2016.03.026

Prokhorenko, V., Choo, K. K. R., & Ashman, H. (2016b). Intent-Based Extensible Real-Time PHP

Supervision Framework. IEEE Transactions on Information Forensics and Security, 11(10),

2215–2226. https://doi.org/10.1109/TIFS.2016.2569063

Scott, D. J. (2005). Abstracting application-level security policy for ubiquitous computing.

http://www.cl.cam.ac.uk/

Scott, D., & Sharp, R. (2002). Developing secure web applications. IEEE Internet Computing, 6(6),

38–45. https://doi.org/10.1109/MIC.2002.1067735

Tomar, P., & Singh, R. C. (2021). Cascade-based Multimodal Biometric Recognition System with

Fingerprint and Face. Macromolecular Symposia, 397(1).

https://doi.org/10.1002/masy.202000271

Valeur, F., Mutz, D., & Vigna, G. (2005). A learning-based approach to the detection of SQL attacks.

Lecture Notes in Computer Science, 3548(Detection of Intrusions and Malware, and

Vulnerability Assessment: Second International Conference, DIMVA 2005. Proceedings),

123–140. https://doi.org/10.1007/11506881_8

Wan, J., Chen, Y., & Bai, B. (2021). Joint feature extraction and classification in a unified framework

for cost-sensitive face recognition. Pattern Recognition, 115.

https://doi.org/10.1016/j.patcog.2021.107927

Wassermann, G., & Su, Z. (2004). An analysis framework for security in Web applications. SAVCBS

2004 Specification and Verification of Component-Based Systems, 70.

Xie, Y., & Aiken, A. (2006). Static detection of security vulnerabilities in scripting languages. 15th

USENIX Security Symposium, 179–192.

Yang, Z., Xu, Q., Bao, S., He, Y., Cao, X., & Huang, Q. (2021). When All We Need is a Piece of the

Pie: A Generic Framework for Optimizing Two-way Partial AUC framework Image

Processing View project Saliency Detection with Comprehensive Information View project

When All We Need is a Piece of the Pie: A Generic Framework for Optimizing Two-way

Partial AUC. https://www.researchgate.net/publication/354047024

Yeole, A. S., & Meshram, B. B. (2011). Analysis of different technique for detection of SQL injection.

International Conference and Workshop on Emerging Trends in Technology 2011, ICWET

2011 - Conference Proceedings, Icwet, 963–966. https://doi.org/10.1145/1980022.1980229

Yuan, Z., Guo, Z., Xu, Y., Ying, Y., & Yang, T. (n.d.). Federated Deep AUC Maximization for

Heterogeneous Data with a Constant Communication Complexity. Retrieved January 12,

2022, from www.libauc.org

