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ABSTRACT 

As of the date of writing of this paper, we found no effort whatsoever in the employment of 

Trusted Computing (TC)'s Trusted Platform Module (TPM) security features in Buffer 

Overflow Attack (BOA) mitigation. Such is despite the extensive application of TPM in 

providing security based solutions, especially in key exchange protocols deemed to be an 

integral part of cryptographic solutions. In this paper we propose the use of TPM's Platform 

Configuration Register (PCR) in the detection and prevention of stack based buffer overflow 

attacks. Detection is achieved via the integrity validation (of SHA1 hashses) of both return 

address and call instruction opcodes. Prevention is achieved via encrypting the memory location 

addresses of both the return and call instruction above using RSA encryption. An exception is 

raised should integrity violations occur. Based on effectiveness tests conducted, our proposed 

solution has successfully detected 6 major variants of buffer overflow attacks attempted in 

conventional application codes, while incurring overheads that pose no major obstacles in the 

normal, continued operation of conventional application codes.  

 

Keywords: 
Buffer Overflow Attack, Trusted Platform Module, Platform Configuration Register (PCR), ptrace, 

TPM_Extend, TPM_Seal. 

 

 

INTRODUCTION 

 

Buffer Overlfow Attacks (BOA) appears as of the date of writing of this paper- found in leading 

exploit reporting sites such as packetstorm security and exploit-db [1, 2]. Such is despite BOA 

was initially first reported by Aleph One way back in 1996 [3]. Untill BOA can be eradicated to 

an appreciably safe level or eradicated, work into BOA mitigation shall further necessitates 

momentum. 

The source of BOA lies in the absence of limit check in codes, resulting in overflowing 

of statically allocated buffers. A simple example to illustrate BOA is via program tesbuff.c 

below [4]. Note that tesbuff.c and program refers to the same entity throughout this paper. 
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#include <unistd.h> 

 

void Tesbuff() 

{ 

char buff[4]; 

printf("Some input: "); 

gets(buff); 

puts(buff); 

} 

 

int main(int argc, char *argv[ ]) 

{ 

Tesbuff(); 

return 0; 

} 
Figure 1: Tesbuff.c – A Sample Code Vulnerable to BOA. 

 

Input of chars in excess of four overflows buff array and results in the overwriting of the return 

address (0x40253f in Figure 2 below) of the main function in the memory stack. Overwriting of 

the return address results in the existence of vulnerability for exploit deployment, an example of 

one of such exploit is the spawning of a shell (via shellcodes) - a form of privilege escalation 

attack where control is redirected from the compromised host to a malicious adversary [6]. 

Some notable work focuses only on return address vulnerability attack mitigation were: 

hardware based protection of the return address as per SmashGuard [7], a micro-architecture 

based approach as per Park et al. [8] and compile time protection of return address as per Return 

Address Defense (RAD) [9]. 

Another aspect of an attack on a program’s memory stack is the modification of the call 

instruction opcode (see 0x40253a in Figure 2 below) to effect a control flow hijacking attack. It 

was demonstrated via Return Oriented Programming (ROP) attacks that unintended instruction 

sequences can be introduced into x86 instruction sequences in the memory stack, particularly 

over the opcodes of an instruction. Such unintended instructions were never intended by the 

program or compiler [5].  Consider the following gdb dissassembly of the buffer overflow 

vulnerable code testbuff.c in Figure 1 above. 

 

(gdb) disas main 

Dump of assembler code for function main: 

 

0x0000000000402526 <+0>: push   %rbp 

0x0000000000402527 <+1>: mov    %rsp,%rbp 

0x000000000040252a <+4>: sub    $0x10,%rsp 

0x000000000040252e <+8>: mov    %edi,-0x4(%rbp) 

0x0000000000402531 <+11>:  mov    %rsi,-0x10(%rbp) 

0x0000000000402535 <+15>:  mov    $0x0,%eax 

0x000000000040253a <+20>:  callq  0x4024f0 <Tesbuff> 

0x000000000040253f <+25>:  mov    $0x0,%eax 

0x0000000000402544 <+30>:  callq  0x4024e0 <Display> 

0x0000000000402549 <+35>:  mov    $0x0,%eax 

0x000000000040254e <+40>:  leaveq 

0x000000000040254f <+41>:  retq 
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End of assembler dump. 

 

(gdb) disas Tesbuff 

Dump of assembler code for function Tesbuff: 

0x00000000004024f0 <+0>: push   %rbp 

0x00000000004024f1 <+1>: mov    %rsp,%rbp 

0x00000000004024f4 <+4>: sub    $0x10,%rsp 

0x00000000004024f8 <+8>: mov    $0x408ca5,%edi 

0x00000000004024fd <+13>:  mov    $0x0,%eax 

0x0000000000402502 <+18>:  callq  0x401e20 <printf@plt> 

0x0000000000402507 <+23>:  lea    -0x10(%rbp),%rax 

0x000000000040250b <+27>:  mov    %rax,%rdi 

0x000000000040250e <+30>:  mov    $0x0,%eax 

0x0000000000402513 <+35>:  callq  0x401e50 <gets@plt> 

0x0000000000402518 <+40>:  lea    -0x10(%rbp),%rax 

0x000000000040251c <+44>:  mov    %rax,%rdi 

0x000000000040251f <+47>:  callq  0x4022c0 <puts@plt> 

0x0000000000402524 <+52>:  leaveq 

0x0000000000402525 <+53>:  retq 

End of assembler dump. 
Figure 2: gdb Disassembly of Tesbuff.c Memory Stack. 

 

 

The control flow hijacking of the call instruction manifests when the original call was 

replaced with something like: 

callq  0x4024fe <Evil_Tesbuff> 

Program execution flow would then be redirected to the malicious function 

Evil_Tesbuff. Any malicious code residing in Evil_Tesbuff can subsequently be deployed. 

While some work exists on protecting return address as mentioned earlier, we had 

discovered that till date no attempt was made to leverage any form of protection on the call 

instruction in memory stack from such control flow redirection vulnerability. While the return 

address is secured, the call instruction is still vulnerable [7-9]. Hence, the effective mitigation 

measures of BOA   necessitates the protection of both the return address and call instruction 

opcodes. We shall refer to both to be Vulnerable Entry Points (VEP) throughout this paper. 

Reasonably recent efforts into BOA mitigation proposed the vulnerability patching 

method: upon program binary execution,   compromised vulnerabilities in overflowed programs 

are automatically patched to restore the program into normal working order and vulnerable 

buffers are moved into protected memory regions. Examples of such approaches: SafeStack and 

SoupInt [11, 12]. The patching methods employed, while effective in plugging BOA 

vulnerabilities, suffer from a major drawback: prevention occurs after damage/upon had been 

done. We are of assertion that an improved methodology would be to permit complete program 

execution only after the binary passed all essential integrity validations, especially at the 

vulnerable return and call locations. 

In an attempt to propose a viable solution towards: a) the protection of both return 

address and call instruction opcode,  b) prevention of the exploitation of BOA vulnerability 

prior to complete program execution,  we propose the design and implementation of our 

solution: hardware anchored mitigation of BOA via Trusted Platform Module (TPM). We are 

the first to utilise TPM in BOA mitigation work, as despite being first introduced in 2002, no 

effort was found to leverage TPM security features into BOA mitigation work. 
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Our approach utilises TPM security features of TPM_Extend and TPM_Seal into the two 

main arms of our BOA mitigation solution– the Validation and Preventive Modules, (VM) and 

(PM) respectively [13]. We begin with an initial state whereby the program is initially in a non 

operative RSA encrypted state, starting from location 0x40253a onwards (i.e. the Vulnerability 

Point or VP). The private RSA key is sealed into TPM hardware registers – the Platform 

Configuration Registers (PCR) for tamper resistance. Decryption (unseal) of the VP location 

(i.e. lifting of non-operative state) is permitted upon successful validation of the hashes (clean 

vs. runtime) of both return address and call instruction opcode – by the VM. Both hashes are 

stored (or extended) into TPM PCR – again for tamper resistance. 

 

The contributions of our paper are as follows: 

 

a.   we had proposed an improved solution of BOA mitigation encompassing two major 

vulnerable points in a binary: return address and call instruction (which has so far being 

neglected in BOA mitigation works). BOA mitigation work providing solution at return address 

targets only the return address. 

 

b.  our proposed solution is hardware based – hence tamper resistant and its integrity is 

guaranteed. Such is due to the fact that the Validation Gadgets [(VG) – (See next section)]  - are 

stored in hardware registers i.e. PCRs – the theft of which is impossible via software based 

attacks.  

 

c. we had, to date, implemented the VM in 64-bit Fedora Linux OS and evaluated its 

effectiveness and performance using actual BUFFER OVERFLOW exploit codes. 

 

Our proposed solution is anticipated to be ideal for real-world deployment due to the 

hereinlisted strengths: 

 

a. Acceptable systems overhead 

Hashes of VG are generated using TPM hardware SHA1 engine, hence we anticipate there will 

be acceptable penalty in terms of consumption of system resources. 

 

b. Total trustworthiness 

Absolute Integrity of the employed BOA Detection Mechanism is guaranteed due to TPM 

anchored protection of VG. Total trust can be placed on our solution since there’s no way VG 

hashes can be stolen from TPM hardware registers. 

 

The rest of the paper is organised as follows: Section 2 details the design and 

architecture of our proposed solution, Section 3 details the methodology employed in 

implementing our solution, Section 4 provides the experimental results and finally Section 5 

summarises our work. 

 

 

 

 

 

 

I. DESIGN 
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We introduce a high level overview for the design of our solution in this section. We then 

elaborate on how each component of our system functions in BOA mitigation. Our solution is 

based on the idiom ‘its better to look before you leap’ – thus VG shall be deemed to be 

malicious until proven otherwise. As mentioned in Section 1, our solution comprises two major 

arms- the VM and PM.  

Note that the non operative state is the first tentative step towards realizing the idiom 

above. The PM’s refined operating principle employed is that both memory locations and 

instruction opcodes are deemed to be malicious unless proven otherwise.  

The initial state of the program binary is enforced by the PM, serving as an Enforcement 

Mechanism. All operations in memory addresses beginning from the call instruction to the 

bottom of the program’s memory stack (i.e. from 0x40253a onwards) shall initially be in a non 

operative state. To achieve such a state, memory addresses from 0x40253a onwards need to be 

in a RSA encrypted state (whereby the private RSA key is sealed to TPM PCR using 

TPM_Seal).  

The non operative state shall be lifted (i.e. memory addresses decrypted or unsealed 

using TPM_Unseal) only upon Validation Gadgets (see paragraph below) passing the validation 

stage by the VM as per next paragraph below. 

Next, the VM serves as an Integrity Checkpoint Mechanism – verifying the integrity of 

Validation Gadgets (VG) which comprises both hashes (of return address and call instruction 

opcodes) and RSA private encryption keys. Note that the VGs are  extended (i.e. stored using 

TPM_Extend) in TPM PCR for tamper proof measures, which in turn guarantees the integrity 

both of the VM and PM, i.e. guards the guard. 

In the Validation Module, which serves as an Integrity Validation Checkpoint, the 

refined operating principle employed is that the program shall pass integrity validation checks 

at points of vulnerability.  

We thus utilise the TPM built in SHA1 hash engine to generate both clean and runtime 

hashes of a program’s function return address and call instruction opcode. The hashes of an 

uninfected program’s return address and the call instruction opcode are extended into two PCRs 

(PCR - 13&14). See Figure 6. The runtime hashes of the identical program’s return address and 

call instruction opcode are compared via an Integrity Assessment Engine (IAE). Mismatch 

indicates abnormal program behavior – hence the program is un-trustable. 

 

II. IMPLEMENTATION 

 

This section details the implementation of both the VM & PM in our proposed solution. Our 

solution mechanism comprises three phases: Pre-Deployment, Deployment and Post 

Deployment. 

 

A.  Pre-Deployment Phase 

 

The internal architecture of the VM is illustrated in Figure 3 below. The core components of the 

VM are the Checkpoint Trap (CT) , PCR Extender (PE) and the IAE. 

Prior to the deployment of the VM, a clean database of the SHA1 of the VG needs to be 

made available for a runtime comparison of the VG of the testbuff binary. The PE component 

utilises the TSPI compliant function Tspi_TPM_PcrExtend () to both generate the SHA1 of the 

VGs and then extend the VGs to a chosen TPM PCR. 

The CT functions similar to the gdb debugger – by initially forking the testbuff binary as 

a child process (via the fork () system call) and then setting breakpoints at VEPs, hence 
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sets breakpoint traps 

Validates SHA-1 

 

Extends VGs into  

TPM PCR 

TPM PCR 

preparing the environment for the IAE to perform its operations of integrity assessment of the 

VG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                         Figure 3: Architecture of the VM. 

 

 

B.  Deployment Phase 

 

Breakpoints need to be set at two locations i.e. both the VEP as previously mentioned. The 

ptrace() system call  is utilised to develop a gdb like  feature – of setting  breakpoints at both the 

VEP memory address locations [10]: 

 

a. of the call instruction in the memory stack of a binary in execution (i.e. binary of 

compiled tesbuff.c) – we term this as VEP-1, and, 

 

b. of the return address of tesbuff.c. We term this as VEP-2. 

 

Breakpoints require the use of trap instruction - 0xcc.  Hence, the VM writes the 0xcc into the 

opcodes of both VEP1 and VEP2 via the use of the POKE_TEXT enumeration parameter 

supplied to the ptrace () function. [10]. The code fragment below demonstrates the setting of a 

trap at VEP2: 

 

unsigned return_addr = 0x000000000040252f ;  // address for    

                                                                               VEP2 

 

/* Write the trap instruction 'int 3' into the address in return_addr */ 

    unsigned ret_data_with_trap = (ret_data & 0xFFFFFF00) | 0xCC;              

    ptrace(PTRACE_POKETEXT, child_pid, (void*)return_addr, (void*)ret_data_with_trap); 

 

unsigned ret_readback_data = ptrace(PTRACE_PEEKTEXT, child_pid, (void*) return_addr, 

0); 

 

procmsg("After trap SIGNAL, data at return_addr (i.e RET ADDRESS) at 0x%08x: is -> 

0x%08x \n\n", return_addr, ret_readback_data); 

CT 

testbuff binary 

IAE VG 

VEPs 

PE 
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Upon code execution, the RIP (64 bit - Instruction Pointer) points to the location of the 

return_addr signifying that a trap had been set at 0x40252f. The terminal output (Figure 3) 

below shows the Instruction opcode of the return address has been changed from b8 to cc. See 

Figure 3 – indicated by the blue arrow. Such result in the child (testbuff binary) entering into a 

trap state, permitting the IEA to perform its operations of clean vs. runtime comparison of 

SHA-1 of VGs at VEP-1 and VEP-2.  

 

The RIP is not permitted to ‘point’ to the call and return address memory locations respectively 

till the IAE approves of the integrity of the return address and call instruction opcode 

respectively.  

 

C.  Post Deployment Phase 

 

An alert is immediate generated (see Figure 4 -  red rectangle) should the hashes are not 

identical, signaling the occurrence of BUFFER OVERFLOW in the traced binary. Note that in 

Figure 3 below, the input of eight ‘A’s lead to the overflowing of the char buff array (see Figure 

1) and hence the overwriting of the original return address at 0x040252f [4]. The PM operative 

state will not be lifted and the memory addresses after the 0x040252f location will remain in 

RSA encrypted state – such prevents the deployment of any form of exploits or malicious codes 

that results from the BUFFER OVERFLOW attack on the vulnerable testbuff binary.   

 

 

 
             Figure 4: Validation Module in Deployment 

 

 

 

EVALUATION 

 

We had conducted capability tests on our proposed solution via effectiveness and performance 

evaluations. All experiments were conducted on an actual system for live, real time results. Our 

test-bed platform: Acer Veriton PC with 4GB RAM and Intel i3 Processor running Fedora Core 

20 (64 bit) kernel version 3.15-6. 
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A. Effectiveness 

 

We ran the VM against the list of well known BUFFER OVERFLOW attack variants as per 

Table 1. The modus operandi of these variants targets the function return address of programs - 

whereby the return address needs to be overwritten in order for the variants in Table 1 to 

operate. The VM is able to reliably detect overflow occurrences as shown in Table 1. The major 

categories of buffer overflow attack variants detected successfully by the VM demonstrates that 

our solution is indeed one vital addition into the current and ongoing research into buffer 

overflow attack mitigation. 

 

B. Performance  

 

To demonstrate that our solution is not only reliable but further ideal for deployment in actual 

environments we ran microbenchmark tests to gauge any overheads introduced by our proposed 

solution.  

We initially measure the execution time of running the compiled C source binaries of all 

the buffer overflow attack variants in Table 1 without the VM and with inputs triggering 

overwrite of a singe return address. The execution time measurement is repeated, with the 

identical binaries and configurations as per the initial step but with the VM running. To obtain 

the required data for performance benchmarks, we utilised the most direct method for the 

acquisition of execution time of binaries, the time tool which operates with the 

gettimeoftheday() as the main software timer component. Figures 5 and 6 illustrate our 

performance measurement results.  

Our deployment of the VM reported an average increase of ratio of binary execution 

time of 2.30. The ratio was due to the setting and removal of breakpoints in all the buffer 

overflow variant binaries in Table 1, hence resulting in the increase of binary execution time. 

Further, verification of the binary with the VM involves the execution of two binaries 

simultaneously, hence the reason behind the average execution time of 2.30 across all buffer 

overflow variants as per Figures 5 and 6. However, hash computation of VG were found not to 

contribute to the ratio increase - since the TPM’s built in SHA1 engine was utilised in hash 

computation for the VG. Furthermore, the time tool measures execution binary time utilising 

only software based clocks. Hence, any lags in software execution time shall bound to be 

reported by the time tool. 

 

 

 

 

 

 

 

 
Table 1: BOA Variants Detected by the VM 

 

BUFFER 

OVERFLOW 

Variant No. 

BUFFER 

OVERFLOW 

Attack Variant 

 

Detected by 

VM 

1 Local Char Array  
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Buffer Overflow (i.e. 

testbuff.c) 

 

 

Yes 2 Integer Overflow  

3 Return to lib-C 

4 Format String Attack 

5 NULL Pointer 

Dereferencing  

6 ROP based Exploit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5:  Performance Analysis – Measurement of Binary Execution Time of Our Proposed Solution 
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Figure 6: Ratio of Execution Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Extending VG into TPM PCR 

CONCLUSION 

 

We had presented a vital hardware based addition to the existing arsenal of mitigatory research 

efforts towards combating buffer overflow attacks, which continues to plague applications 

developed even till today. Our solution operates based on the principle that programs should not 

be granted execution privileges until its integrity had been duly verified hence ensuring that 

only safe, legitimate programs are permitted to be granted execution privileges.  
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The TPM anchored VM is guaranteed of its tamper resistance since the clean hashes of 

VG are stored in the PCR – the guard is totally trustable. Such is unlike past software only 

based buffer overflow mitigation works which posed risks of compromise – the guard isn’t 

totally trustable. Furthermore, our solution proposed buffer overflow mitigation via two vital 

attack vectors in buffer overflow attack variants -both the call instructions and return addresses.  

The empirical evaluation outcome of our approach  i.e. a) the successful detection major 

buffer overflow attack variants and b) acceptable average ratio of execution time of 2.30 (with 

no reported major lag in binary execution upon validation by the VM – consolidates the 

viability of our proposed solution. 

 

 

FUTURE WORK 

 

We are in the process of adapting our proposed solution to solve the possibility buffer overflow 

attack on SELinux hooks (i.e function pointers) – the vulnerability in which we had previously 

reported in SELGuard [14]. Porting our proposed solution to SELinux requires implementation 

of both the VM and PM at the kernel level. Our pioneer work of buffer overflow attack 

mitigation with TPM anchorage opens another avenue for enhancing buffer overflow mitigation 

– we plan to append remote detection capabilities to the VM. Such is achieved via the use of 

remote attestation [15], whereby in networked systems, users can perform an attestation test to 

verify the authenticity and integrity of a executing program binary via clean-runtime 

comparison of hashes of VG.  

The clean hashes of VG are stored in a remote user’s database (secured with TPM) and 

runtime hashes of VG are delivered from the server (hosting a program binary) to the remote 

user. The user system performs comparison of the hashes (clean vs. runtime) the output of 

which will determine if a  binary is executing in an untampered execution environment .We 

foresee such remote attestation mechanism deployable in financial business applications where 

integrity and trust are of vital importance – one such example is in Internet Banking. 
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